Aofei Sheng

SSL/TLS 协议运行机制的概述

Published on

互联网的通信安全,建立在 SSL/TLS 协议之上。

本文简要介绍 SSL/TLS 协议的运行机制。文章的重点是设计思想和运行过程,不涉及具体的实现细节。如果想了解这方面的内容,请参阅 RFC 文档

一、作用

不使用 SSL/TLS 的 HTTP 通信,就是不加密的通信。所有信息明文传播,带来了三大风险。

1. 窃听风险(Eavesdropping):第三方可以获知通信内容。
2. 篡改风险(Tampering):第三方可以修改通信内容。
3. 冒充风险(Pretending):第三方可以冒充他人身份参与通信。

SSL/TLS 协议是为了解决这三大风险而设计的,希望达到:

1. 所有信息都是加密传播,第三方无法窃听。
2. 具有校验机制,一旦被篡改,通信双方会立刻发现。
3. 配备身份证书,防止身份被冒充。

互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度。而且,协议还必须能够经受所有匪夷所思的攻击,这使得 SSL/TLS 协议变得异常复杂。

二、历史

互联网加密通信协议的历史,几乎与互联网一样长。

1994 年,NetScape 公司设计了 SSL 协议(Secure Sockets Layer)的 1.0 版,但是未发布。
1995 年,NetScape 公司发布 SSL 2.0 版,很快发现有严重漏洞。
1996 年,SSL 3.0 版问世,得到大规模应用。
1999 年,互联网标准化组织 ISOC 接替 NetScape 公司,发布了 SSL 的升级版 TLS 1.0 版。
2006 年和 2008 年,TLS 进行了两次升级,分别为 TLS 1.1 版和 TLS 1.2 版。最新的变动是 2011 年 TLS 1.2 的修订版。

目前,应用最广泛的是 TLS 1.0,接下来是 SSL 3.0。但是,主流浏览器都已经实现了 TLS 1.2 的支持。

TLS 1.0 通常被标示为 SSL 3.1,TLS 1.1 为 SSL 3.2,TLS 1.2 为 SSL 3.3。

三、基本的运行过程

SSL/TLS 协议的基本思路是采用公钥加密法,也就是说,客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。

但是,这里有两个问题。

1. 如何保证公钥不被篡改?

解决方法:将公钥放在数字证书中。只要证书是可信的,公钥就是可信的。

2. 公钥加密计算量太大,如何减少耗用的时间?

解决方法:每一次对话(Session),客户端和服务器端都生成一个“对话密钥”(Session Key),用它来加密信息。由于“对话密钥”是对称加密,所以运算速度非常快,而服务器公钥只用于加密“对话密钥”本身,这样就减少了加密运算的消耗时间。

因此,SSL/TLS 协议的基本过程是这样的:

1. 客户端向服务器端索要并验证公钥。
2. 双方协商生成“对话密钥”。
3. 双方采用“对话密钥”进行加密通信。

上面过程的前两步,又称为“握手阶段”(Handshake)。

四、握手阶段的详细过程

“握手阶段”涉及四次通信,我们一个个来看。需要注意的是,“握手阶段”的所有通信都是明文的。

4.1 客户端发出请求(ClientHello)

首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做 ClientHello 请求。

在这一步,客户端主要向服务器提供以下信息。

1. 支持的协议版本,比如 TLS 1.0 版。
2. 一个客户端生成的随机数,稍后用于生成“对话密钥”。
3. 支持的加密方法,比如 RSA 公钥加密。
4. 支持的压缩方法。

这里需要注意的是,客户端发送的信息之中不包括服务器的域名。也就是说,理论上服务器只能包含一个网站,否则会分不清应该向客户端提供哪一个网站的数字证书。这就是为什么通常一台服务器只能有一张数字证书的原因。

对于虚拟主机的用户来说,这当然很不方便。2006 年,TLS 协议加入了一个 Server Name Indication 扩展,允许客户端向服务器提供它所请求的域名。

4.2 服务器回应(SeverHello)

服务器收到客户端请求后,向客户端发出回应,这叫做 SeverHello。服务器的回应包含以下内容。

1. 确认使用的加密通信协议版本,比如 TLS 1.0 版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。
2. 一个服务器生成的随机数,稍后用于生成“对话密钥”。
3. 确认使用的加密方法,比如 RSA 公钥加密。
4. 服务器证书。

除了上面这些信息,如果服务器需要确认客户端的身份,就会再包含一项请求,要求客户端提供“客户端证书”。比如,金融机构往往只允许认证客户连入自己的网络,就会向正式客户提供 USB 密钥,里面就包含了一张客户端证书。

4.3 客户端回应

客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。

如果证书没有问题,客户端就会从证书中取出服务器的公钥。然后,向服务器发送下面三项信息。

1. 一个随机数。该随机数用服务器公钥加密,防止被窃听。
2. 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
3. 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的 HASH 值,用来供服务器校验。

上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称“Pre-Master Key”。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的加密方法,各自生成本次会话所用的同一把“会话密钥”。

至于为什么一定要用三个随机数,来生成“会话密钥”,dog250 解释得很好:

“不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于 SSL 协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。

对于 RSA 密钥交换算法来说,Pre-Master Key 本身就是一个随机数,再加上 Hello 消息中的随机,三个随机数通过一个密钥导出器最终导出一个对称密钥。

Pre-Master 的存在在于 SSL 协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么 Pre-Master Secret 就有可能被猜出来,那么仅适用 Pre-Master Secret 作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上 Pre-Master Secret 三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。”

此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。

4.4 服务器的最后回应

服务器收到客户端的第三个随机数 Pre-Master Key 之后,计算生成本次会话所用的“会话密钥”。然后,向客户端最后发送下面信息。

1. 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
2. 服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的 HASH 值,用来供客户端校验。

至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的 HTTP 协议,只不过用“会话密钥”加密内容。

五、参考链接

(转自:阮一峰的网络日志